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Prediction of NMR J-coupling in solids
with the planewave pseudopotential
approach†

Jonathan R. Yates∗

We review the calculation of NMR J-coupling in solid materials using the planewave pseudopotential formalism of Density
Functional Theory. The methodology is briefly summarised and an account of recent applications is given. We discuss various
aspects of the calculations which should be taken into account when comparing results with solid-state NMR experiments
including anisotropy and orientation of the J tensors, the reduced coupling constant, and the relation between J and crystal
structure. Copyright c© 2010 John Wiley & Sons, Ltd.
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Introduction

Together with the chemical shielding and electric field gradient
the J-coupling is a key quantity in solid-state NMR experiments,
providing information on the local atomic environment in a
material. J-coupling is often utilised in multi-dimensional NMR
experiments but there are relatively few reports of measured
values of J in solids – as compared to the chemical shift or
Electric Field Gradient (EFG). This is particularly true for lighter
elements and for two bond and more distant coupling, as in
such cases J is often sufficiently small as to be hidden by the
line width. However, advances in experimental technique such as
accurate setting of the magic angle, very high spinning speeds
together with the availability of high-field spectrometers have
stimulated interest in measuring small J-couplings (see Ref. [1] for
a recent summary). Highlights have included the observation of
two J-couplings between a given spin pair,[2] the measurement
of distributions of J in amorphous materials,[3] and reports of J as
low as 1.5 Hz.[4]

First principles quantum mechanical calculations have an
important role to play in the interpretation of NMR experiments
on complex materials. The Linear Augmented Planewave (LAPW)
approach in its implementation within the Wien series of
codes[5] has been widely used and shown to reliably predict
EFG tensors.[6] In the past decade the Gauge Including Projector
Augmented Wave (GIPAW) approach[7] has been used to compute
chemical shielding (CSA) tensors and EFGs within the planewave
pseudopotential formalism of density functional theory. More
recent work has enabled J tensors in solids to be computed
within this framework.[8] Only a few initial applications of this
approach have been published.[8 – 11] However, we take this
early opportunity to highlight some issues which should be
considered when making the comparison both with experiments
and with quantum chemical approaches applied to cluster models
of solids. Comprehensive reviews exist for many related topics
including calculation of J tensors using quantum chemical
approaches,[12 – 14] calculations of chemical shifts and electric
field gradients in solids[15,16] and introductions to first principles
materials modelling.[17,18]

Theory

In an effective nuclear spin Hamiltonian, we can identify spin–spin
coupling with a term of the form

H =
∑
K<L

IK(DKL + JKL)IL (1)

Here the nucleus K has spin angular momentum �IK and an
associated magnetic moment µK = γK�IK where γK is a nuclear
constant known as the magnetogyric ratio. DKL is the direct dipolar
coupling between the two nuclei and is a function of the nuclear
constants and the internuclear distance. JKL is the indirect coupling
and represents an interaction mediated by the bonding electrons.
The J-coupling is a small perturbation to the electronic ground-
state of the system, and we can identify it as a derivative of the
total electronic energy E, of the system

JKL = �γKγL

2π

∂2E

∂µK∂µL
(2)

An equivalent expression arises from considering one nuclear spin
(L) as perturbation which creates a magnetic field at a second
(receiving) nucleus (K)

B(1)
in (RK) = 2π

�γKγL
JKL · µL (3)

Equation (3) tells us that the question of computing J is essentially
that of computing the magnetic field induced indirectly by a
nuclear magnetic moment. The first complete analysis of this
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indirect coupling was provided by Ramsey.[19,20] When spin–orbit
coupling is neglected, we can consider the field as arising from
two, essentially independent, mechanisms. Firstly, the magnetic
moment can interact with electronic charge inducing an orbital
current – which in turn creates a magnetic field at the other nuclei
in the system. This mechanism is similar to the case of magnetic
shielding in insulators which arises from the orbital currents
induced by a uniform external field. The second mechanism arises
from the interaction of the magnetic moment with the electronic
spin, causing an electronic spin polarisation (i.e. the ‘up’ and ‘down’
spin charge densities are no longer identical). The resulting spin
density creates a magnetic field through a hyperfine interaction.
This is similar to the case of the Knight shift in a metallic system.
To examine these contributions in more detail, we decompose the
electronic Hamiltonian for the two coupled nuclei as:

H = 1

2
p2 + V(r) + HDSO + HPSO + HFC + HSD (4)

Here V(r) is the all-electron local potential (including terms such as
the Coulomb potential from the nuclei and the Hartree potential)
and the other terms are as follows; the diamagnetic spin orbit
(DSO),

HDSO =
( µ0

4π

)2 (µL × rL)

|rL|3 · (µK × rK)

|rK|3 (5)

the paramagnetic spin orbit (PSO),

HPSO = µ0

4π
µB · (rL × p)

|rL|3 (6)

the Fermi-contact (FC),

HFC = gβ
µ0

4π

8π

3
S · µL δ(rL) (7)

and the spin–dipolar (SD),

HSD = gβ
µ0

4π
S ·

(
3rL(µL · rL) − r2

LµL1

|rL|5

)
(8)

Here rL = r − RL with RL the position of nucleus L, µ0 is the
permeability of a vacuum, δ is the Dirac delta function, S is
the Pauli spin operator, g the Landé g-factor and β is the Bohr
magneton.

The FC and SD terms give rise to a spin magnetisation density
m(r), and the DSO and PSO terms induce a current density, j(r). By
working to first order in these quantities we can write the magnetic
field at atom K induced by the magnetic moment of atom L as

B(1)
in (RK) = µ0

4π

∫
m(1)(r) ·

[
3rKrK − |rK|2

|rK|5

]
d3r

+ µ0

4π

8π

3

∫
m(1)(r)δ(rK) d3r

+ µ0

4π

∫
j(1)(r) × rK

|rK|3 d3r. (9)

Formally J can be described by a 3 × 3 matrix, where the elements
refer to the Cartesian components of the two spins. Physically
this reflects the fact that for a given Cartesian orientation of the
magnetic moment of the perturbing nucleus, say z, the magnetic
field at the receiving nucleus will, in general, have components

along each of x, y and z. J can be decomposed into symmetric Jsym,
and antisymmetric Janti−sym contributions, i.e. Jsym = (J + J†)/2
where J† represents the transpose of J. As for the case of the
magnetic shielding tensor, to first order only the symmetric part
of J directly affects the observed NMR spectrum. The isotropic J
coupling is given by the one third of trace of J and the anisotropy
can be defined as

�J = Jzz − 1

2
(Jxx + Jyy) (10)

where Jzz , Jyy and Jxx are the principal components of Jsym, labelled
according to |Jyy − Jiso| > |Jyy − Jiso| > |Jyy − Jiso|

We can decompose B(1)
in (RK) and hence the total J-coupling

tensor into five components:

J = JDSO + JPSO + JFC + JSD + JSD/FC (11)

The term JSD/FC arises from a magnetisation induced by a
Fermi-contact mechanism at the perturbing site, which in
term induces a magnetic field at the receiving site through a
spin–dipolar mechanism. The remaining terms arise from the
same coupling mechanism at the perturbing and receiving sites,
e.g. JSD corresponds to magnetisation created by a spin–dipolar
interaction, which then creates a magnetic field at the receiving
nucleus by a spin–dipolar interaction. By considering the form of
the operators in Eqns (5)–(8), we can identify if a term contributes
to the isotropy, anisotropy or both aspects of the J tensor. For
example, the FC operator gives a magnetic field which is parallel to
the nuclear moment. As a result JFC is purely isotropic. By a similar
argument JSD/FC contributes only to the anisotropic component of
the tensor J. The remaining terms contribute to both the isotropic
and anisotropic part of J.

Implementation

Periodic boundary conditions

In electronic structure simulations it is common practise to treat
a crystalline material by considering the primitive unit cell under
periodic boundary conditions. In this circumstance, an atom in the
primitive cell would experience the same electronic environment
as if it were in an infinite crystal. In order to compute the J coupling
we consider the coupling between the perturbing nucleus and all
other nuclear spins in the system. By making one atom different,
we have broken the translational symmetry of the crystal. For small
primitive cells, there will be an interaction between the perturbing
atom and its periodic images, as illustrated in Fig. 1. Such a situation
would also occur when modelling a defect site in a crystal. In
this case, it is necessary to perform calculations on a supercell
(multiple of the primitive cell), so that this spurious interaction has
negligible effect. Fortunately, the interaction between magnetic
dipoles converges rapidly and tests with supercells of increasing
size on silicophosphate[8] and molecular crystals[9] found that
∼10 Å between an atom and its nearest periodic image was
sufficient to give converged results.

It can be seen from Eqns (5)–(8) that the operators responsible
for J-coupling are short ranged. This may cause us to question the
need for a solid-state approach for the calculation of J. However,
the quantities the operators act on – wavefunctions and electronic
charge density – are influenced by the long range electrostatics of
the material. Quantifying these solid-state effects on J remains an

www.interscience.wiley.com/journal/mrc Copyright c© 2010 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2010, 48, S23–S31
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Figure 1. Representation of a supercell. Left: primative unit cell – perturbing site, and its periodic images are marked in blue. Right: 2 × 2 supercell of the
primative cell.

open question. For the case of molecular crystals a study of Van
der Waals bonded molecules[9] has shown that even when there
are no strong intermolecular interactions solid-state effects on J
couplings can be significant, and within the limits of experimental
detection.

Planewaves, pseudopotentials and projector augmented
wave method

In order to represent objects such as a charge density or a
wavefunction, it is necessary to expand them in some form of
basis set. For solid-state calculations a convenient choice is a
set of planewaves. Essentially this means performing a Fourier
expansion of quantity – so long as the waves are chosen to have a
wavelength commensurate with the crystallographic unit cell they
will automatically satisfy periodic boundary conditions. The size
of the basis set is increased by including waves with successively

shorter wavelengths (i.e. increasing kinetic energy). The quality
of the basis set is conveniently specified by the maximum
energy of the set of planewaves. A planewave basis has several
advantages; including its simplicity, and the fact that it enables
easy parallelism. One can distribute Fourier coefficients amongst
nodes in a compute cluster – on systems with a good quality
interconnect this can be efficient up to about a hundred nodes.
However, an inherent complication in the use of planewaves is the
requirement to describe the core–valence interaction through
a pseudopotential. While this dramatically reduces the number
of planewaves needed to obtain converged results, it does so
at the cost of giving the valence wavefunctions an unphysical
form close to the nucleus (as shown in panel (a) of Fig. 2). The
combination of pseudopotentials and a planewave basis has
proved to give a reliable description of many material properties,
such as vibrational spectra and dielectric response,[21,22] but
properties which depend critically on the wavefunction close to

Figure 2. Schematic representation of the PAW transformation in Eqn (12). The x-axis represents radial distance from a nucleus. (a) Representation of the
pseudowavefunction; (b) pseudo-atomic like states; (c) all-electron atomic-like states; (d) all-electron wavefunction.

Magn. Reson. Chem. 2010, 48, S23–S31 Copyright c© 2010 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/mrc
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the nucleus, such as NMR observables require careful treatment.
The current standard approach to computing such properties
is the projector augmented wave method (PAW) introduced
by Blöchl[23] which provides a formalism to reconstruct the all-
electron wavefunction from its pseudo counterpart, and hence
obtain all-electron properties from calculations based on the use
of pseudopotentials. This approach was adapted by Pickard and
Mauri to give the GIPAW approach to compute magnetic shielding
tensors,[7] however, to compute J the original PAW approach is
sufficient. J-coupling provides a tough test of the PAW formalism
as we must perform a PAW reconstruction both at the perturbing
site, in order to obtain the correct first order response (either
an induced current, or magnetisation density), and again at the
receiving site to obtain the induced magnetic field.

The PAW scheme proposes a linear transformation from the
pseudowavefunction |�̃〉, to the true all-electron wavefunction
|�〉, ie |�〉 = T|�̃〉, where

T = 1 +
∑
R,n

[|φR,n〉 − |φ̃R,n〉]〈p̃R,n| (12)

|φR,n〉 is a localised atomic state (say 3p) and |φ̃R,n〉 is its pseudized
counter part. |̃pR,n〉 are a set of functions which project out the
atomic-like contributions from |�̃〉. This equation is represented
pictorially in Fig. 2. For an all-electron local or semi-local operator
O, the corresponding pseudo-operator, Õ, is given by

Õ = O +
∑

R,n,m

|̃pR,n〉[〈φR,n|O|φR,m〉 − 〈φ̃R,n|O|φ̃R,m〉]〈̃pR,m| (13)

As constructed in Eqn (13) the pseudo-operator Õ acting on
pseudo-wavefunctions will give the same matrix elements as
the all-electron operator O acting on all-electron wavefunc-
tions. Pseudo-operators for the J coupling operators given in
Eqns (5)–(8) are reported in Ref. [8].

In contrast, most quantum chemical calculations employ a basis
set of Gaussian type orbitals. Here convergence is reached by
including more Gaussian type functions, for example with higher
angular momentum coefficients. It has been observed[13,24] that
the Fermi-contact operator is particularly difficult to describe
as it samples the electronic wavefunction only at the nuclear
position. Very large number of basis functions are needed to
numerically converge this contribution. Jensen[24] has developed
a series of Gaussian basis-sets optimised to provide a systematically
improvable description of J. In Fig. 3 we show the convergence
with planewave energy of the Ramsey contributions to 1JCF in
CHF3 within the PAW approach. It is clear from the graph that each
term converges smoothly to the basis set limit: at 80 Ryd the FC
term is within 0.2 Hz of its value at 140 Ryd, and the other terms
are within 0.1 Hz of their limiting values.

In the planewave/PAW approach the Fermi-contact term
presents no special difficulty. To understand this difference, we
examine the form of the Fermi-contact operator in the PAW
scheme

H̃FC = C
∑
n,m

|̃pRL,n〉〈φRL,n|δ(rL)|φRL,m〉〈̃pRL,m| (14)

Where C represents the constants in Eqn (7). Here the Dirac delta
function only occurs in matrix elements between atomic states.
These can be computed to numerical precision in a separate
calculation on an isolated atom. This avoids the need to explicitly
compute the effect of the delta function on the valence states, and
the associated issue of poor numerical convergence.

Figure 3. Convergence of the Ramsey components of the 19F–13C coupling
in CHF3 with respect to the size of the planewave basis.

Computational cost

A single J-coupling calculation provides J between one nucleus
and all others in the system. In many cases, only a small
number of calculations will be required to give all the relevant
couplings – either because of symmetry or because the sample
has been selectively enriched. In such cases, the calculation of J
is comparable to the cost of computing the magnetic shielding
tensors. The most expensive case would be a disordered material,
such as a glass, in which we would require a separate calculation
for each atom in the system. With the rapid advance of computer
technology any benchmark timings quickly become obsolete.
Representative timings can be found in Refs [8–10]. To give
an indication of the cost, using the most recent generation of
processors a calculation on an amino acid with 200 atoms took
22 min to compute the electronic ground-state and a further
72 min to obtain the J tensor between one nucleus and all others
in the system (50 min for the spin terms and 22 min for the orbital
contributions). The calculations were run on four dual-quad core
Intel Xeon E5540 2.53 GHz processors (ie 32 cores in total). The
cost of the calculation scales as the cube of the number of atoms
in the system – for this reason calculations on systems with ≈700
atoms are at the limit of present supercomputers.

Experimental Considerations

We now comment on several points which may be important
when relating calculated values of J to NMR experiments.

Reduced coupling constant

As shown in Eqn (2) the observed J-coupling includes a parametric
dependence on the gyromagnetic ratios of the nuclear spins. It
can be useful to introduce the reduced coupling constant K ,

KKL = 2π

�γKγL
JKL (15)

Physically K corresponds to the coupling between two magnetic
moments of unit strength placed at the atomic positions. K is thus
purely a property of the electronic structure of the material. While
it might appear unnecessary to have introduced a second (and

www.interscience.wiley.com/journal/mrc Copyright c© 2010 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2010, 48, S23–S31
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not directly measurable) quantity it is worth remembering that it
is K which is obtained from an electronic structure calculation. To
see a consequence of this, consider the following example: We
have material in which a J coupling exists between a carbon and
a lithium atom; one sample consists of 6Li, the other 7Li. If the
measured J-coupling in the 6Li sample is 10 Hz, J = 26 Hz will
be measured in the 7Li sample. The difference arises completely
from the change in γLi between 6Li and 7Li, and tells us nothing
about the electronic structure or bonding in the two materials.
As K is independent of γLi it is identical for these two samples
(neglecting any isotope effects on the bonding). Let us say that
for the calculated 13C–6Li coupling we find a 1 Hz difference with
respect to experiment. Then for 13C–7Li the error would be 2.6 Hz.
Again the difference between the two values arises from the
different γLi. It would not be correct to say that the coupling to 6Li
was more computed more accurately than the 7Li coupling.

In a similar vein, care must be taken in comparing J involving
different species. For example, 31P–17O couplings are typically
larger than 29Si–17O couplings.[11] Part of this difference is due to
the fact that γP ≈ 2γSi, and it would be reasonable to expect that
calculated errors in J for 31P-17O couplings would be twice as large
as for 29Si–17O couplings.

Decomposition of J

Following Eqn (11) the total J-coupling tensor can be divided
into several contributions, in particular the isotropic J has four
contributions corresponding to the four mechanisms given in
Eqns (5)–(8). Experimentally only the total tensor can be measured,
however, the contributions (sometime called the Ramsey terms)
can be useful in interpreting the observed J. Quantum chemical
studies have shown that several general observations can be
made,[25] and so far these have been found to also apply to
solid-state systems:[8 – 11] the DSO term is generally very small; the
SD term is usually small, but can play a significant role certain
couplings – e.g. those involving 19F; for one bond couplings the
PSO and FC terms are dominant; and for longer range couplings
usually the FC is the dominant mechanism.

The isotropic J may take a positive or negative value – trivially
this can arise as γ is a signed quantity, but the reduced coupling
constant can also take either sign. For example, in Ref. [11] the
sign of the computed 2JPOP varied between SiP2O7 polymorphs.
Experiments based on spin-echo modulation record only the
magnitude of J. The sign of J has been measured in the solid-state,
for example in Ref. [26] 2JPOP in Na4P2O4·10H2O was observed to

be negative. Finally we note that the PSO and FC terms may be
of opposite sign and hence in certain cases can cancel leading to
very small couplings for directly bonded nuclei. An example of this
cancellation is 1JCN in pyridine.[27]

Anisotropy of J tensors

Experimental and computation studies of the anisotropic com-
ponents of the J-coupling tensors have been reviewed by Vaara
et al.[13] Most work has focused on rather symmetric molecules.
Ab-initio calculations including planewave/PAW calculations on
solids, provide the full J tensor. Calculated principal components
for J tensors involving P, O and Si were reported in Bonhomme
et al.[11] In Fig.4, we show the orientation of 1JPO in an ortep style
plot. The tensor is close to axial symmetry with the symmetry
axis orientated along the internuclear vector. In this case, the
principal components of J are closely aligned to those of the
direct dipolar tensor. However, this symmetry is not enforced (see
Ref. [28] for a discussion of the experimental implications of the
non-coincidence of J and D) and further work is required to explore
the relation between the orientation of J and D.

JKL versus JLK

The symmetric part of J is unaffected when we interchange the
perturbing and receiving nuclei, i.e. JKL = JLK. (The antisymmetric
part undergoes a sign change under the same conditions – i.e.
JKL = −JLK

[29] see also Ref. [30].) However, JKL and JLK correspond
to different calculations: the former considers the spin (or current)
induced by the magnetic moment at site L, the latter by the
magnetic moment at site K. In each case the induced spin
(or current) has a different spacial form – and any numerical
imprecision will result in an asymmetry between the two couplings.
This means that a comparison of JKL and JLK provides a tough test
of the numerical fidelity of the calculations. In practise, in the
planewave/PAW scheme, we have found these difference to be
small fraction of the coupling (e.g. ≈0.1–0.3 Hz for 2JPOP and
2JSiOP).

It should be noted that the ability to compute JKL by two different
routes mirrors the situation when J is measured by observing the
modulation of spin-echo intensity. For example, in Ref. [10], the
one bond J coupling between C and O in Uracil was obtained
twice, first by observation of the spin-echo intensity on 13C and in
a subsequent experiment by observation on 17O.

Figure 4. Ellipsoid representation of the symmetric part of a 1JPO tensor in the monclinic (AIII) polymorph of SiP2O7
[11] O, Si, P atoms are shown in red,

yellow and purple, respectively.

Magn. Reson. Chem. 2010, 48, S23–S31 Copyright c© 2010 John Wiley & Sons, Ltd. www.interscience.wiley.com/journal/mrc
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Figure 5. (a) Local environment of the Si2 site in Si5O(PO)4; (b) hypothetical
ring structure in a silicophosphate.

Figure 6. Pyrole (1) and triazole (2) 6-aminofulvene-1-aldimine derivatives.

J and crystal structure

As noted above the J-coupling mechanism breaks the translational
symmetry of the crystal. For this reason we must carefully
examine the crystal structure to determine the number of unique
J-couplings expected for a given system.

Let us consider a physical example. In Fig.5, we show a schematic
diagram of the local atomic arrangement around the Si2 site in
Si5O(PO4)6. Si has six oxygen nearest neighbours, split between
two sets of chemically equivalent atoms (3 O2 and 3 O5). The
second nearest neighbours are phosphorus – and all six atoms
are chemically equivalent under the symmetry operations of
the crystal. This chemical equivalence is highlighted by the
corresponding chemical shifts: for 17O we would expect two
peaks corresponding to O2 and O5 – while for 31P a single peak
would be seen. But what about the J-couplings for this system?
Clearly there will be two 1JSiO couplings arising from Si2–O2 and
Si2–O5. However, there will also be two 2JSiP couplings, both
involving Si2 and P. If one makes a link between J-coupling
and bonding one coupling arises from the Si–O2–P pathway, the
other from Si–O5–P. In other words the P sites are not magnetically
equivalent.

A physical interpretation for this magnetic inequivalence is as
follows: In the ground-state, all P sites are related by symmetry.
However, a magnetic moment placed at the Si2 site will lower
the symmetry of the system – and now the P atom bonded to O2
will not be in the same environment as the P atom bonded to
O5, i.e. considering the Fermi-contact mechanism the spin density
induced at P(O2) will be different to that at P(O5). Experimentally
it was found that indeed two unique couplings were needed to fit
the spin-echo modulation at Si2[2] – and the values were in good
agreement with those computed.[8]

For illustrative purposes, we consider the hypothetical structure
shown in Fig. 5 in which Si is bonded to the same P via two
distinct oxygen sites. In this case, only a single 2JSiP coupling
exists. In making a connection to bonds we would have to say
that this coupling corresponds to the sum of the Si–O2–P and
Si–O5–P pathways but it would not be experimentally possible to
distinguish the contributions. Computationally one could examine
the induced spin or current, and make a partition between the
pathways but such a division would be arbitrary.

Applications

We now briefly review applications of the planewave pseudopo-
tential approach to the calculation of J in solid materials. It should
be noted that there has been recent work using quantum chemical
approaches and cluster models to compute J in inorganic materi-
als including 2JPOP in (MoO2)2P2O7,[31] 2JSiOSi in a calcium silicate[4]

and in a silicate zeolite.[32]

Molecular crystals

While results for isolated molecules were provided as part of
the initial validation of the planewave/PAW approach in Ref. [8],
the first application to crystalline materials was the examination
of hydrogen bond mediated J couplings.[9] Computed and
experimental 2JNN couplings are reported in Table 1 for two
amino-fulvene derivatives.

These compounds have an intramolecular hydrogen bond – but
no hydrogen bonds between molecules, making them an ideal
case for the study of solid-state effects on J-coupling. Calculations
were performed on three models: the crystalline solid (crys), an
isolated molecule taken directly from the crystal (cons. mol.) and
an isolated molecule whose geometry had been optimised in
vacuum (rel. mol.). The difference between (crys) and (cons. mol.)
must be due to electrostatic effects of the crystal lattice. It was
found that each coupling increased by ≈0.5 Hz on moving from
the solid to crystal (note that as |J| is measured and the couplings
are of opposite sign this means that the observed |2hJNN| would
increase while |2JNN| would decrease). The difference between
(cons. mol.) and (rel. mol.) is ascribed to changes in the geometry
caused by the crystal lattice. This was found to be a small effect for
2JNN but on moving from the (rel. mol.) to the (cons. mol.) model
2hJNN decreased by 1.2 Hz reflecting the weaker (longer) hydrogen
bond in the crystalline geometry.

Joyce et al. also reported 2JNN for a ribbon-like structure
of a deoxy-guanosine derivative. Taking into account the two
equivalent molecules in the unit cell there are 12 possible 2JNN

couplings, two are between molecules across a hydrogen bond,
and the others are intramolecular. The results are summarised
in Table 2. The largest couplings are 2hJN1 – N9 and there is good
agreement between the calculated and measured values. For

www.interscience.wiley.com/journal/mrc Copyright c© 2010 John Wiley & Sons, Ltd. Magn. Reson. Chem. 2010, 48, S23–S31
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Table 1. NMR J-coupling for a pyrole and triazole 6-Aminofulvene-1-
aldimine

Pyrole Triazole

2hJN9 – N1
1JN9 – N′

1

2hJN9 – N1
1JN9 – N′

1

Rel. mol. 9.8 −9.4 9.5 −10.8

Cons. mol. 8.6 −9.4 8.0 −10.7

Solid 8.1 −9.8 7.4 −11.4

Expt (|J|) 8.0 ± 0.3 10.2 ± 0.4 7.2 ± 0.1 12.0 ± 0.1

Calculations taken from Joyce et al. [9] and experimental values from
Brown et al. [33] Numbering from Fig. 6.

remaining couplings only the four between N2/N3 and N3/N9
could be measured,[34] and the calculations show that these
indeed correspond to the largest of the intramolecular couplings.
The couplings next in size are between N1/N2 and while values
of J could not be extracted experimentally, DQ correlations were
present between N1 and N2 in a 15N refocused INADEQUATE
spectrum.[35] At about 1 Hz the couplings between N1/N3 and
N7/N9 have the smallest computed J.

In Ref. [10], calculations of J involving 13C, 15N, 17O were pre-
sented for crystalline forms of uracil and glycine·HCl. Comparison
was made to MAS-spin-echo measurements. The computed and
experimental results are summarised in Table 3. For these chal-
lenging experiments, the calculations played an important role
in determining both the feasibility and interpretation of the ex-
periments. One aspect of this is that the calculations identify
all of the relevant couplings to a given a nucleus. For example,
to interpret the hetronuclear 17O/13C spin-echo measurements
in glycine·HCl it was necessary to take into account 2JOO as
well as 1JOC. Similarly, for interpretation of the hetronuclear
15N/17O spin-echo measurements in Uracil in was necessary to
include the intramolecular 2JNN as well as the intramolecular
2hJNO. In Uracil, there are two coupling pathways between sites
N3 and O4. The calculation provide values for both, and it can
be seen that the two bond intramolecular coupling is much
smaller than the two bond coupling across the O–HN hydrogen
bond.

Table 2. NMR J-coupling for a deoxyguanoise derivative

Coupling Calc (Hz) Expt (Hz)

2JN1a – N2a 2.4 DQ intensity
2JN1b – N2b

2.3 DQ intensity
2JN1a – N3a −1.1 –
2JN1b – N3b

−1.1 –
2hJN1a – N7b

6.5 6.2 ± 0.4
2hJN1b – N7a 7.7 7.4 ± 0.4
2JN2a – N3a 5.4

}
2JN2b – N3b

5.7
6.6 ± 0.7a

2JN3a – N9a 4.4
}

2JN3b – N9b
4.2

4.3 ± 0.2a

2JN7a – N9a −1.2 –
2JN7a – N9b

−1.3 –

Calculations taken from Joyce et al. [9] and experimental values from
Pham et al. [34] Numbering taken from Fig. 7 DQ refers to correlations
observed in a 15N refocused INADEQUATE spectrum.[35]

a average value observed.

Figure 8. Crystal structure of uracil. Nitrogen, oxygen, carbon, and
hydrogen atoms are represented as blue, red, grey, and white circles,
respectively.

Figure 7. Crystal structure of the short-chained deoxyguanosine[36] showing the two inequivalent molecules (labelled A and B). Nitrogen, oxygen, carbon,
and hydrogen atoms are represented as blue, red, grey, and white circles, respectively.
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Table 3. Calculated NMR chemical shifts and J-coupling for Uracil
and Glycine·HCl

Coupling Calc Expt

Uracil
2JN1 – N3 2.7 2.7 ± 0.1
2JN3 – O4 0.5
2hJN3 – O4 4.6 4.8 ± 0.5a }
2hJN1 – O4 6.1 6.7 ± 0.4a 5.1 ± 0.6b

Glycine·HCl
1JC – O1 27.5 25.3 ± 0.3c }
1JC – O2 24.9 24.7 ± 0.2c 26.7 ± 0.6d

2JO1 – O2 7.9 8.8 ± 0.9

Taken from Hung et al. [10] Numbering taken from Figs 8 and 9. a from
observations on 15N b average value from observations on 17O, c from
observations on 17O, d average value from observations on 13C.

Figure 9. Crystal structure of glycine·HCl. Nitrogen, oxygen, carbon, and
hydrogen atoms are represented as blue, red, grey, and white circles,
respectively.

Inorganic materials

Calculations of 2JSiOP were reported for Si5O(PO4)6 in Ref. [8] and
compared against experimental results from Coelho et al.[2] As
shown in Table 4 the calculated couplings range from 17 to 1 Hz,
and are in good agreement with experiment. The presence of
two unique couplings between the Si2 and P sites was discussed
above. Calculated 2JSiOP have been reported for three polymorphs
of SiP2O7 in Ref. [11]. For the two monoclinic forms (AIII and AIV)
of SiP2O7 the silicon site is coordinated by six different oxygens
which complicates the analysis of the spin-echo modulations.
However, the experimental modulation was found to give good
agreement when compared to the average of the computed
couplings. Calculated 1JSiO and 1JPO were also reported for these
compounds. As might be expected 1JPO are generally larger
than 1JSiO. For each of the calculated couplings the principal
components and anisotropy of J was reported – in all cases the
anisotropy was significant.

Table 4. Calculated NMR chemical shifts and J-coupling for sili-
cophosphate Si5O(PO4)6

Coupling 31P [ppm] 29Si [ppm] Calc. [Hz]

J2
P – O3 – Si1

−47.4 (−43.8) −214.8 (−213.3) −17.12 (15 ± 2)

J2
P – O2 – Si2

−218.7 (−217.0) −16.26 (14 ± 2)

J2
P – O5 – Si2

−218.7 (−217.0) −1.17 (4 ± 2)

J2
P – O4 – Si3

−128.6 (−119.1) −14.13 (12 ± 2)

The experimental values[2] are in brackets. Taken from Ref. [8].

Outlook

Initial calculations of NMR J-couplings for solid materials using the
planewave pseudopotential formalism have demonstrated the
accuracy and utility of the approach. From a computational point
of view, two developments would extend the range of systems
to which the present approach could be applied. Firstly, the
current implementation uses norm-conserving pseudopotentials.
An extension to the more computationally efficient ultrasoft
potentials[37] (as has been done for magnetic shielding[38])
would allow semi-core states to be included in the calculations.
This would enable efficient calculation of J involving transition
metals. The second area involves including relativistic effects
to compute couplings involving heavy elements. Quantum
chemical calculations have shown these can be significant for
J.[39] A significant fraction of the relativistic effects on magnetic
shieldings cancel out when comparing to experimental chemical
shifts. However, J-coupling is an absolute quantity and no
such cancellation occurs. Immediate applications would include
couplings between 207Pb and 19F.[40]
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